

Cyber Security support to the HumanDrive Project 13th Dec 2018 SBD Automotive Ltd

Luigi Bisbiglia

Business Development Manager

HUMAN DRIVE

- 'Grand Drive' will be an end-to-end journey of around 200 miles including Motorway, A-Road and Country Road driving
- Using Machine Learning and AI to provide human-like control
- Research into human driving behaviour using physical vehicles and simulator
- Transport Systems Catapult and Horiba MIRA responsible for the Safety Work Package
- Cyber Security covered by a separate Work Package

SBD's Cyber Support Package

- Threat modelling for security requirements and design reviews
- Penetration testing
- Risk assessment (analysis of results, remediation and risk rating)

Using machine learning to develop natural, human like vehicle control

- New product and technology tracking
- New standards and guidelines
- Competitor activity
- Knowledge sharing

Intelligence

- Objective setting
- Design process improvement
- Cyber roadmap
- Incident response planning
- Training
- Supplier evaluation

SAE Definitions

Implementation Trends

	SAE Levels	Key in-car architecture charac
	Level 0 "Legacy architecture"	 Piece meal implementation Very few ADAS available, developed No sensor fusion (sensor hardwired Mainly CAN technology
	Level 1 "Carry-over architecture"	 Piece meal implementation A few stand-alone ADAS When there is actuation (e.g. brakin Mainly CAN technology
	Level 2 "Primitive ADAS architecture"	 Dedicated ADAS network Primitive / localised sensor fusion ta FlexRay technology introduced Ethernet used for 360 all round view Some features communicate with k
	Level 3 "Semi autonomous architecture"	 Dedicated ADAS domain to support Sensor fusion partitioned in domain GPS / map data becomes a sensor th Communication with key fob / smart FlexRay and Ethernet standard
	Level 4 "Full autonomous architecture"	 Dedicated ADAS domain to support GPS / map data need near "real-time Communicate with key fob / smart OTA download and connected servi FlexRay and Ethernet standard
	Level 5 "Driverless architecture"	 Same as for level 4 but with more se

Using machine learning to develop natural, human like vehicle control

cteristics

d as a stand alone solution d to ECU, not networked) and no actuators involved

ing), the ADAS ECU is usually on the same network as the actuator

taking place (front sensing with rear facing). Some sensors are networked

key fob / smartphone

rt sensor fusion on a much larger scale ns that needs **regular update** artphone

t full sensor fusion (Forward, Rear, All Around) ne" update & high definition tphone vices (including Artificial intelligence)

sensors to accommodate all types of road, weather and lighting environment.

Layer 3 and above layers architecture

Representative Electrical Architecture

STRIDE

STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of Privilege) is a threat modelling approach developed by Microsoft and it is currently considered the most applicable method for the automotive industry because it:

- Is a threat centric approach
- Provides a structured approach of categorising threats
- Enables direct mapping with system's elements and security attributes

Unauthorised modification of data

User with limited privileges gains access to restricted application

User with limited privileges gains access to restricted application

Threat Modelling

Reference: Who are the Hackers?

different.

Using machine learning to develop natural, human like vehicle control

Depending on hackers/hacker groups, targets can be different. Therefore attacking techniques and equipment are also

Defining the Actors Environment

Representative Abuse Stories

- User stories is a method for \bullet capturing high-level system functional requirements. The user stories are generated by the system stakeholders.
- stories captured User for ulletmalicious Actors can help in identifying potential system misuse or exploitation, at a high level.
- User stories written for intended \bullet Actors can help in identifying the functions that need protecting and the required interactions between the intended Actors.

Case #	Actor	I Want	So That
1	Bitcoin Miner	Use ability of ECUs	Get more bitcoin
2	Academic Researcher/Cyber Criminal	Spoof the system	Get private information from vehicle
3	Service Provider	Patch the vehicle but ignore some of	Have this customer back and get more
		them	money
4	Vehicle Owner	Block the entrance parking	Annoy my neighbours
5	Vehicle Owner	Cheat after cars into giving ways	He can drive faster
6	Professional Hacker	Hack into the car	Ransom it to their owners
7	Competitor	Cause delays(jam) in some roads	Gain advantage/value
8	Criminal	Follow another vehicle	Do criminal activities
9	Criminal	Other CAV crash into my own	Get money
10	Criminal	Use Autonomous Car	Transport illicit goods
11	Terrorist	Use Autonomous Car	Damage traffic
12	Professional Hacker	Spoof signs	Change vehicle behaviour
13	OCA (Organise Crime Agent)	Data mining - sell products on web	Can get profit
14	OEM	Gather data to sell	Get money
15	Competitor	Develop new exciting products	Seize the market
16	Pranker	Direct traffic	Make giggles
17	OEM	Highlight deficiencies in system	Gan greater market sharing
18	Attacker/Terrorist	Remotely control cars	Commit a terrorist attack
19	Professional Hacker	Control the vehicle	Do the DDoS attack to others

Defence In Depth

Using machine learning to develop natural, human like vehicle control

HUMAN DRIVE

Defence in Depth

1. Off-board interfaces	• Remoto • Custon
2. On-board interfaces	• Wireles • Wired
3. Inter-network	• Secure • Messag
4. Intra-network	• ECU-E(• Sensor
5. ECU level	• Secure • Secure

HumanDrive Consortium

HITACHI **Inspire the Next**

ATKINS

http://humandrive.co.uk

Using machine learning to develop natural, human like vehicle control

Richard.Hillman@ts.catapult.org.uk

